Defect Correction for Boussinesq Flow
نویسنده
چکیده
منابع مشابه
Visco-potential free-surface flows and long wave modelling
In a previous study [DD07b] we presented a novel visco-potential free surface flows formulation. The governing equations contain local and nonlocal dissipative terms. From physical point of view, local dissipation terms come from molecular viscosity but in practical computations, rather eddy viscosity should be used. On the other hand, nonlocal dissipative term represents a correction due to th...
متن کاملMODELING OF GROUNDWATER FLOW OVER SLOPING BEDS IN RESPONSE TO CONSTANT RECHARGE AND STREAM OF VARYING WATER LEVEL
This paper presents an analytical model characterizing unsteady groundwater flow in an unconfined aquifer resting on a sloping impervious bed. The aquifer is in contact with a constant water level at one end. The other end is connected to a stream whose level is increasing form an initial level to a final level at a known exponentially decaying function of time. Moreover, the aquifer is repleni...
متن کامل1 9 Se p 20 02 Penta - Hepta Defect Chaos in a Model for Rotating Hexagonal Convection
In a model for rotating non-Boussinesq convection with mean flow we identify a regime of spatiotemporal chaos that is based on a hexagonal planform and is sustained by the induced nucleation of dislocations by penta-hepta defects. The probability distribution function for the number of defects deviates substantially from the usually observed Poisson-type distribution. It implies strong correlat...
متن کاملDefect Correction Method for Viscoelastic Fluid Flows at High Weissenberg Number
We study a defect correction method for the approximation of viscoelastic fluid flow. In the defect step, the constitutive equation is computed with an artificially reduced Weissenberg parameter for stability, and the resulting residual is corrected in the correction step. We prove the convergence of the defect correction method and derive an error estimate for the Oseen-viscoelastic model prob...
متن کاملAdaptive Defect-Correction Methods for Viscous Incompressible Flow Problems
We consider a defect correction method (DCM) which has been used extensively in applications where solutions have sharp transition regions, such as high Reynolds number fluid flow problems. A reliable a posteriori error estimator is derived for a defect correction method. The estimator is further studied for two examples: (a) the case of a linear-diffusion, nonlinear convection-reaction equatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007